

第二十九届磁共振脑影像基础班

思影科技将于 2020 年 3 月 15 日-- 3 月 20 日(周日--下周五)在南京举办第二十九届磁共振脑影像基础班(详见课表安排)。

1、培训简介

功能神经影像技术已成为研究认知和脑疾病的重要手段。利用神经影像技术(如静息态、弥散张量成像 DTI、脑网络、脑结构等),研究人员可以更深入地理解脑疾病及寻找治疗靶点,近 10 年来,国际上基于该技术在脑疾病、心理与认知科学、人工智能等领域发表的论文数量呈指数级上升趋势,国内医学界也开始在脑科学研究领域发力。然而许多临床医生及研究者对数据处理并不十分了解,限制了科研进度。

扎实掌握相关数据处理技术是脑影像研究的关键,为此,思影科技拟举办磁共振 脑成像数据处理分析基础班,通过手把手教学,帮助临床医生与初入门的科研人员快 速掌握磁共振脑影像数据处理分析操作技能,从而提高专业人员开展神经影像相关研 究工作的水平。

此次课程为磁共振脑影像入门课程,如对脑网络,机器学习或其他模态脑影像数据处理感兴趣,请浏览思影科技网站或微信公众号了解。

2、培训对象与内容

此次培训的对象是希望利用脑影像技术进行脑科学研究的医生、高校教师与在校 学生等,思影科技一直坚持小班教学的方式,并配备教辅人员,后续提供在线支持, 及时解决学员数据处理中存在的问题。

内容主要包括: fMRI 技术的基础知识、实验设计、静息态数据预处理与统计检验 (初步、高级统计及多重比较校正),软件作图,独立成分分析(ICA)与 FNC,脑结构 数据处理, SPM-VBM 操作, ANTs 配准,弥散张量成像(DTI)等。

注:如方便,请于会议开始前一天到达会场(10:00 - 20:00)熟悉场地及安装软件、 拷贝资料等事宜。

3、课程安排

时间 时间		课程名	主要内容			
,	上午	软件、数据准备	静息态磁共振功能图像基础功能磁共振数据处理软件包的介绍与安装:格式转换、图像查看等			
第一天 3.15 王典	下午	数据预处理	MATLAB 软件与内部指令集一览预处理方法与常用预处理流程静息态数据的预处理实操(SPM)			
	晚上	数据批处理与图像小工具	数据批处理软件介绍图像小工具的使用			
	上午	静息态功能指标 计算	• 功能指标的计算: ALFF(低频振幅)、FC(功能连接)、ReHo等			
第二天 3.16 杨田雨	下午	统计初步	• SPM 统计: 单样本 T 检验、双样本 T 检验、配对 T 检验			
	晚上	统计初步	• SPM 统计: T 检验实操			
	上午	Advanced 统计&多 重比较(1)	设计矩阵与对比矩阵单因素(重复测量)方差分析			
第三天	下午	Advanced 统计&多 重比较(2)	双因素/混合方差分析多重比较矫正(FWE, FDR, GRF 和 Alphasim)			

	<u>r</u>				
杨田雨	晚上	结果汇报&软件画图	 制作表格,结果汇总 MRIcroN介绍和画图 BrainNet Viewer介绍和画图(差异图和连接图) 		
第四天 3.18	上午	VBM 讲解	 脑结构分析及 VBM 原理介绍 VBM 分析流程及操作步骤详解		
	下午	VBM 演示+CONN 统计	VBM 操作演示:包括数据转换、图检查、预处理、指标提取、统计的标识		
朱佳佳	晚上	ICA 独立成分分析	独立成分分析基于 ICA 的空间分布分析 (intranetwork analysis)		
	上午	FNC 分析原理	• FNC 分析原理及步骤详解(internetwork analysis)		
第五天 3.19 朱佳佳 王典	下午	FNC 分析实践	FNC 数据预处理FNC 网络连接构建FNC 统计分析		
	晚上	Linux 基础与 ANTs 介绍	• Linux 操作系统基础与虚拟机的使用 • 使用 ANTs 进行图像标准化		
第六天	上午	DTI 数据处理介绍	DTI 原理简介DTI 数据处理概况FSL 及其运行环境简介		

3.20			•	TBSS 数据处理原理
谢桑马		TBSS 数据分析原理	•	TBSS 数据处理实践
	下午	与实践	•	预处理的批处理实现
				其他一些 DTI 数据分析方法概述

4、培训人数

此次培训限定人数 28 人左右,报名敬请从速。

5、培训地点

南京市秦淮区中山南路 315 号瑞华大厦 2404, 具体见会议指南。

6、培训费用

所有参会人员 3500/人(含资料费、培训费,交通及食宿费自理)。

7、报名方式

请将报名回执发送至: svfmri@163.com

8、缴费方式

银行转账(转账信息见回执表)或者支付宝(syfmri@163.com,户名:南京思影科技有限公司),也可现场刷公务卡或微信信用卡,如需其他缴费方式,请与我们联系,联系方式见下文,谢绝录像,主办方提供发票。

9、联系方式

联系人: 杨晓飞。

电话: 025-86703770/18580429226

咨询微信号: siyingyxf

10、备注

请各位学员自带笔记本电脑 Windows64 位系统((推荐 win10)、i5 及以上、86 内存、506 剩余存储空间等基本配置;如无特殊情况请不要带苹果电脑,如确实只能用苹果电脑,苹果 Mac 电脑请提前使用 Bootcamp 加装 Windows64 位系统);学员自己有数据的可以带 3-5 例进行现场处理;请将回执表发送至 syfmri@163.com 并及时缴费,便于安排。

报名回执表

单位名称、税号							
(发票抬头)							
姓名		性别		邮箱			
电话号码			科室/专业				
缴费方式	□转账 □支付宝 □现场刷卡 □微信信用卡						
级页 / 八	(请选择在□打√)						
	户名:南京思影科技有限公司						
银行信息	账号: 125909558210401						
	开户银行:招商银行股份有限公司南京中山南路支行						
汇款备注	第二十九届磁共振脑影像基础班+姓名						

注:请完整填写回执表后回传给我们,以便给你发送确认函,谢谢支持!

11、在线支持服务

思影科技将为参加培训的学员提供免费的在线支持与合作,确保学员能够熟练掌 握脑影像数据处理方法。

12、培训人员简介:

朱佳佳,医学博士,安徽医科大学第一附属医院磁共振室,副研究员、校聘副教授、硕士研究生导师、主治医师。2017 年毕业于天津医科大学影像医学与核医学专业。主要研究方向为利用多模态磁共振成像(MRI)技术研究神经精神疾病的发病机制及早期诊断方法。以第一作者及通讯作者在 Schizophrenia Bulletin 和 British Journal of Psychiatry 等期刊发表 SCI 论文 29 篇,累计影响因子 98。主持国家自然科学基金青年项目 1 项。担任 Neuropsychopharmacology,Neuroimge-Clinical,Journal of Affective Disorder,Progress in Neuropsychopharmacology & Biological Psychiatry,Psychiatry Research,Brain Imaging and Behavior 等杂志审稿专家。

谢桑马,博士,杭州电子科技大学讲师,2017年1月毕业于中国科学院自动化研究所。主要研究方向为扩散磁共振成像的计算理论和方法、脑影像数据分析软件开发以及扩散磁共振成像在精神疾病中的应用。扩散磁共振成像分析软件 DiffusionKit 的主要开发者,获得软件著作权一项。熟练掌握扩散磁共振成像领域的主流方法,精通相关软件的操作使用。目前,已在 journal of NeuroscienceMethods、

TranslationalPsychiatry 等国际杂志以第一作者发表 SCI 论文 3 篇,目前主持国家自然科学基金青年项目 1 项,参与多项国家自然基金项目,同时担任国际期刊 IEEE Transactions on Medical Imaging 等杂志审稿人。

杨田雨,硕士,拥有数学与计算机学科背景,擅长脑成像领域方法学,思影科技技术总监。

王典,硕士,思影科技高级工程师。

微信扫码关注思影科技, 获取最新脑影像资讯